Using Pytorch (again)#
With little changes compared to the CPU backend code PyTorch can be used to run the algorithm on the GPU.
Just add a .cuda() call to array creation, and transfer the results in to the CPU scope using a cpu() call.
import torch
def calculate(x_min, x_max, y_min, y_max, max_iterations, resolution):
x = torch.linspace(x_min, x_max, resolution).cuda()
y = torch.linspace(y_min, y_max, resolution).cuda()
c = x + y[:, None] * 1j
c0 = c.clone().detach()
iterations = torch.zeros_like(c, dtype=torch.int32).cuda()
for iteration in range(max_iterations):
mask = torch.abs(c) < 2
c[mask] = c[mask] ** 2 + c0[mask]
iterations[mask] += 1
return iterations.cpu().detach().numpy(), {}